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Fock–Bargmann representation of the distorted Heisenberg
algebra

J Oscar Rosas-Ortiz†
Departamento de Fı́sica, CINVESTAV-IPN, AP 14-740, 07000 Ḿexico DF, Mexico

Received 11 December 1995

Abstract. The dynamical algebra associated with a family of Isospectral Oscillator
Hamiltonians, nameddistorted Heisenberg algebrabecause of its dependence on a distortion
parameterw > 0, has recently been studied. The connection of this algebra with the Hilbert
space of entire analytic functions of growth( 1

2 , 2) is analysed.

1. Introduction

In 1980, Abraham and Moses found a general class of one-dimensional potentials isospectral
to the oscillator one by means of the Gelfand–Levitan formalism [1]. An elegant way of
constructing the same class, used by Mielnik [2], consists of the application of a variant of
the standard factorization method. The connection between the Darboux transformation and
this generalized factorization has recently been discussed [3–5]. The Mielnik construction
is suitable for the easy identification of a pair of annihilation and creation operators for
the isospectral oscillator Hamiltonians{A,A†}, which are adjoint to each other, although
their commutator is not the identity [2]. Departing of the previous operators, a different
pair, {A,B†}, was constructed such that the commutator is the identity but(A)† 6= B†

[6]. Recently, a third choice was made [7], where the annihilationCw and creationC†
w

operators are adjoint to each other and commute with the identity on a subspace of the state
space, imitating then the behaviour of the usual annihilation and creation operators for the
harmonic oscillator, i.e. the Heisenberg–Weyl algebra. It turns out thatCw andC†

w depend
on a parameterw > 0. The apparence of this parameter is important because it leads to the
Heisenberg–Weyl algebra for some of its particular values. Moreover, the coherent states
constructed from these operators reach the standard form of the harmonic oscillator coherent
states for suchw-values. In the general case (w arbitrary), these operators have an algebraic
structure very similar to the harmonic oscillator one.

The Fock–Bargmann representation of the Heisenberg–Weyl algebra is widely used in
physics and mathematics [8]. The first application was in quantum field theory, where
the operators̄z and ∂/∂z̄ represent the creation and annihilation of bosons. Recently, this
algebra has also been considered in the study of tensor bosons, arising in composite object
theories, which according to their symmetry properties have been classified as symmetric
or antisymmetric [9].

The resemblance between the operator pair{Cw,C†
w} and the Heisenberg–Weyl

corresponding one{a, a†}, suggests the following question, which we will try to answer in
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this paper: what are the properties of the operatorsCw andC†
w when they act on a space of

entire analytic functions? In particular, we will consider just one of the two kinds of coherent
states obtained by Fernándezet al [7], and we will show that the corresponding Fock–
Bargmann spaceFw contains entire analytic functions of growth( 1

2, 2). The realization of
Cw andC†

w on Fw is a multiplication byz̄ and a derivation with respect tōz plus a new term
dependent on the distortion parameter respectively. We also discuss the specific example
with w = 1, and we show that the usual harmonic oscillator case is recovered onF1.

2. Distorted Heisenberg algebra revisited

Let us consider an infinite discrete set of orthonormal state vectors in the Hilbert space
H,{|θn〉, n = 0, 1, 2, . . .}. This is a basis set inH related to the standard harmonic oscillator
basis{|ψn〉, n = 0, 1, 2, . . .} [2] by

b|θn〉 = √
n |ψn−1〉 b†|ψn〉 = √

n+ 1 |θn+1〉.
The |θn〉’s, n = 0, 1, 2, . . ., satisfy the following eigenvalues equation:

Hλ|θn〉 = E(λ)n |θn〉
whereE(λ)n = En = n+ 1

2, andHλ = b†b+ 1
2 is the Hamiltonian isospectral to the harmonic

oscillator HamiltonianH = a†a+ 1
2 = aa†− 1

2 obtained through the generalized factorization
method of Mielnik [2]. The explicit expression ofHλ in the coordinate representation is

Hλ = −1

2

d2

dx2
+ x2

2
− d

dx

[
e−x2

λ+ ∫ x
0 e−y2 dy

]
.

Note that the factorizing operatorsb† andb are not the raising and lowering operators for
the basis{|θn〉}. According to Ferńandezet al [7], the raising and lowering operators similar
to those of the harmonic oscillator, and leading to the distorted Heisenberg–Weyl algebra,
are built by means of the condition

[C,C†] = I on Hs ⊂ H
whereHs is a subspace of the Hilbert spaceH.

It turns out that these operators depend on a parameterw > 0 and take the form [7]

Cw = b† 1

N + 1

√
N + w

N + 2
ab C†

w = b†a† 1

N + 1

√
N + w

N + 2
b.

Let us remark that sinceb, b†, a, a† are first-order differential operators, thenCw andC†
w are

differential operators of order greater than three (indeed they are infinite-order differential
operators). Their action on the basis{|θn〉} is given by

Cw|θn〉 = (1 − δn,0 − δn,1)
√
n− 2 + w |θn−1〉

C†
w|θn〉 = (1 − δn,0)

√
n− 1 + w |θn+1〉

Iw|θn〉 = [1 − δn,0 + δn,1(w − 1)]|θn〉
(2.1)

where Iw ≡ [Cw,C†
w]. From this action, it is clear that forw > 0 the set of operators

{Cw,C†
w, Iw} enables one to decompose the Hilbert spaceH as a direct sum of two invariant

subspaces,H = H0 ⊕Hr , whereH0 is spanned by|θ0〉 andHr by {|θn〉, n > 1}. These two
subspaces induce irreducible representations ofCw, C†

w and Iw. The usual representation
of the Heisenberg algebra is recovered onHr for w = 1. On the other hand, forw = 0 H
decomposes (under the action of{C0, C†

0, I0}) as the direct sum of three invariant subspaces
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H = H0 ⊕ H1 ⊕ Hs , whereH1 is generated by|θ1〉 andHs by {|θn〉, n > 2}, and the usual
Heisenberg algebra representation is once again recovered onHs . In this paper we will
work the casew > 0, and when we consider a particular case we will analyse just that with
w = 1.

We can propose the new operatorNw = C†
wCw, analogous to the standard number

operatorN = a†a, the relevant representation of which arises when we consider its action
on the vectors|ψ〉 ∈ Hr . The standard number operator representation is recovered onHr

by takingw = 1 in Nw and relabelling the eigenstates ofHλ as |φn〉 ≡ |θn+1〉. However,
the dependence ofNw as a function of the HamiltonianHλ is not obvious (in the general
casew > 0). A nonlinear dependence is probably in the context of the recent generalized
Fock treatment [10], but it is quite involved to determine it precisely. This is due to the
fact that the order ofCw andC†

w is in general infinity while the one ofHλ is finite (order
two).

The normalized ground state ofHλ, |θ0〉, can be introduced by means of the requirements
Cw|θ0〉 = C†

w|θ0〉 = 0. The solution to these equations in the coordinate representation is
given [6] by

θ0(x) ∝ e−x2/2

λ+ ∫ x
0 e−y2 dy

where λ ∈ R, |λ| > √
π/2. Hence|θ0〉 is orthogonal to all|θn〉 ∈ Hr [2]. Because

Cw|θ1〉 = 0 (see equation (2.1)), the eigenvaluez = 0 of Cw is doubly degenerated. As a
consequence, the state|θ0〉 is disconnected of the spaceHr and |θ1〉 is the state playing the
role of the extremal state for the distorted Heisenberg–Weyl algebra. Thus, the operatorC†

w

can be used to construct the basis of the state spaceHr from its repeated action on|θ1〉:

|θn〉 =
√

0(w)

0(w + n− 1)
(C†

w)
n−1|θ1〉 w 6= 0. (2.2)

A similar situation has been recently reported by Spiridonov for systems and creation
and annihilation operators different to the ones used in this paper (see [4, section VII]).
Spiridonov also looks for the coherent states as eigenstates of the corresponding annihilation
operator, and they could be found through the solution of some third-order differential
equations ([4, equations (7.10) and (7.13)]). Unfortunately, one cannot find those coherent
states easily or directly be means of such a method; however, it can be done for the
isospectral Hamiltonians with which we are dealing [6, 7]. This is one of the advantages
of the coherent states we will present in the next section.

As a final point of this section, the resolution of the identity in terms of the basis
{|θn〉, n > 0} is the standard one

I =
∞∑
n=0

|θn〉〈θn|.

This lets us expand any state vector|h〉 ∈ H as

|h〉 =
∞∑
n=0

an|θn〉 an ≡ 〈θn|h〉.

3. Distorted Heisenberg algebra coherent states

Recently, a family of coherent states has been constructed as eigenstates of the annihilation
operator,Cw|z,w〉 = z|z,w〉; here they are calledw-coherent states. Their explicit form in
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terms of|θn〉 is given [7] by

|z,w〉 =
√

0(w)

1F1(1, w; r2)

∞∑
n=0

zn√
0(w + n)

|θn+1〉 z = reiϕ (3.1)

where 1F1(a, b; x) is a hypergeometric function. The ket|θ0〉, by construction, is also a
coherent state. The set{|θ0〉, |z,w〉} is complete inH, with an identity resolution

I = |θ0〉〈θ0| +
∫

|z,w〉〈z,w| dµ(z,w) (3.2)

where dµ(z,w) is the measure written as

dµ(r,w) = 1F1(1, w; r2)

π0(w)
e−r2

r2(w−1) rdr dϕ. (3.3)

As usual, this new basis set is not orthogonal because the inner product between two
different coherent states

〈z,w|z′, w〉 = 1F1(1, w; z̄z′)√
1F1(1, w; r2) 1F1(1, w; r ′2)

(3.4)

is in general, different from zero. Any vector state|h〉 ∈ H is now expanded as

|h〉 = h0|θ0〉 +
∫
h̃(z, z̄, w)|z,w〉 dµ(z,w) (3.5)

whereh0 ≡ 〈θ0|h〉

h̃(z, z̄, w) ≡ 〈z,w|h〉 = hw(z̄)√
1F1(1, w; r2)

(3.6)

and

hw(z̄) ≡
∞∑
n=0

√
0(w)

0(w + n)
z̄n〈θn+1|h〉. (3.7)

In this representation, the inner product between|f 〉 ∈ H and |g〉 ∈ H is

〈f |g〉 = f̄0g0 +
∫

f̄w(z̄)gw(z̄)

1F1(1, w, r2)
dµ(z̄, w) (3.8)

= f̄0g0 +
∫
f̄w(z̄)gw(z̄) dσw(z̄)

where

dσw(z) = e−r2
r2(w−1)

π0(w)
rdr dϕ. (3.9)

In the special casef = g we obtain

|| |f 〉 ||2 = |f0|2 +
∫

|fw(z̄)|2 dσw(z) > 0. (3.10)
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4. The Hilbert space of entire functions

4.1. Basic properties ofFw

The goal of this section is to characterize any vector state by an entire analytic function.
Such a realization of the Hilbert spaceH is called theFock–Bargmann representation
[11, 12], and it can be obtained through any coherent state system. Here, we will consider
the coherent states|z,w〉 and the Hilbert spaceHr ⊂ H.

Let us introduce the Hilbert spaceFw, which elements are all functions of the form (3.7).
For eachw, the inner product is defined by

(f, g)w ≡
∫
f̄w(z̄)gw(z̄) dσw(z̄) (4.1)

where the integral is extended over allC. In particular, for f = g we require (see
equation (3.10))

(f, f )w =
∫

|fw(z̄)|2 dσw(z̄) < ∞. (4.2)

It can easily be seen thatfw(z) is an entire analytic function (see equation (3.7)). We want
to study in more detail the properties offw(z). With this aim, let us analyse equation (3.6).
Because|z,w〉 is normalized, the Schwarz inequality gives|〈z,w|f 〉| 6 || |f 〉 ||, |f 〉 ∈ Hr ,
and one obtains

|fw(z)| 6
√

1F1(1, w, r2) || |f 〉 ||. (4.3)

Hence the behaviour of|fw(z)| at infinity is the same as that of
√

1F1(1, w, r2). As has
been shown, the generalized hypergeometric function

pFq(a1, . . . , ap, b1, . . . , bq, z
s) ≡ pFq(ai, bj , z

s) (4.4)

= 0(b1) · · ·0(bq)
0(a1) · · ·0(ap)

∞∑
n=0

0(a1 + n) · · ·0(ap + n)

0(b1 + n) · · ·0(bq + n)

zn

n!

is an entire analytic function (exponential type) of orderρs and typeσs [6], i.e. growth
(σs, ρs). The relation betweenρs and σs is given by σs = s/ρs = 1 + q − p. In the
particular case of1F1(1, w, r2) we find ρs = 2 andσs = 1. Then, because

|√pFq(ai, bj ; zs)| = √|pFq(ai, bj , zs)| 6 exp
(

1
2σsr

ρs
)

(4.5)

one obtains that
√

1F1(1, w, r2) hasρ = 2 andσ = 1
2, i.e. growth( 1

2, 2). This behaviour
at infinity is equal to the corresponding one for the harmonic oscillator case, which shows
that thew coherent states are ‘good’ for generating the Fock–Bargmann representation of
Hr . Thus, we have realized the Hilbert spaceHr as a spaceFw of entire analytic functions
fw(z) of the form (3.7) and satisfying condition (4.2).

The orthonormal basis{|θn〉, n > 1} in Fw has a simple form

θn(z̄) ≡
√

1F1(1, w, r2) 〈z,w|θn〉 = z̄(n−1)

√
0(w)

0(w + n− 1)
. (4.6)

This is the simplest orthonormal set of vectors inFw. The functionshw(z̄) are then written
as

hw(z̄) =
∞∑
n=0

An+1θn+1(z̄) An+1 ≡ 〈θn+1|h〉 (4.7)
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and the corresponding representation of the coherent state|α,w〉, α ∈ C is

αw(z̄) =
√

1F1(1, w, r2) 〈z,w|α,w〉 (4.8)

= 1F1(1, w, z̄α)√
1F1(1, w, |α|2)

.

Note that equations (4.6) and (4.8) reproduce the usual harmonic oscillator case when we
takew = 1.

4.2. Principal vectorsea, and the reproducing kernel

Equation (4.3) is quite typical for a Hilbert space of analytic functions, and the term√
1F1(1, w, r2) arises due to the set of coherent states taken into account. In this section we

will derive some results independent of the function1F1(1, w, r2) and valid for all possible
spacesF .

Let us consider the elementsea of Fw (for everya ∈ C) given by

ea(z) ≡
∞∑
n=0

θn+1(z)θ̄n+1(a) = 1F1(1, w, zā). (4.9)

Using these vectors, called theprincipal vectorsof Fw, we can introduce a bounded linear
functional

fw(a) = (ea, f )w. (4.10)

The integral form reads

fw(a) =
∫

1F1(1, w, az̄)fw(z) dσw(z). (4.11)

Then,1F1(1, w, az̄) is the reproducing kernel forFw. Conversely, equation (4.10) implies
(4.3) with ||ea|| = 1F1(1, w, |a|2).

The connection between the reproducing kernel and the coherent states as represented
in theFw space is given by (4.8). This could be seen also by expressing (4.11) in terms of
thew coherent states|z,w〉 ∈ Hr because

fw(ā) =
√

1F1(1, w, |a|2)〈a,w|f 〉

=
∫

1F1(1, w, āz)√
1F1(1, w, r2)

〈z,w|f 〉 dµ(z,w)

=
∫

1F1(1, w, zā)fw(z̄) dσw(z).

From this, we get the proportionality between the reproducing kernel and the inner product
of two w coherent states|a,w〉 and |z,w〉 both in Hr .

Finally, the set of vectorsea is complete, i.e. their finite linear combinations are dense
in Fw, because the only vector orthogonal to all of them isf = 0, as follows immediately
from (4.10).

4.3. Realization of the distorted Heisenberg algebra inFw

Let us represent now the generators of the distorted algebra inFw, which is a subspace of
the space of entire functions of growth( 1

2, 2). At this point, it is convenient to introduce
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the unnormalizedw coherent states|z,w〉e =
√

1F1(1, w, r2)|z,w〉. In terms of these the
functionhw(z̄) can be written as

hw(z̄) = e〈z,w|h〉.
The action ofC†

w on hw(z̄) arises from the inner product of|h〉 with the adjoint of
Cw|z,w〉e = z|z,w〉e:

C†
whw(z̄) ≡ e〈z,w|C†

w|h〉 = z̄hw(z̄). (4.12)

The action ofCw on hw(z̄) is also obtained from the inner product of|h〉 with the adjoint
of

C†
w|z,w〉e =

∞∑
m=1

√
0(w)

0(w +m)
zm−1m|θm+1〉 + (w − 1)

z

∞∑
n=0

√
0(w)

0(w + n)
zn|θn+1〉

− (w − 1)

z
|θ1〉 . (4.13)

We then get

Cwhw(z̄) = ∂

∂z̄
hw(z̄)+ (w − 1)

z̄
(hw(z̄)− h1) (4.14)

whereh1 ≡ 〈θ1|h〉, z̄ 6= 0. Finally, the action ofIw on h(z̄) is given by

Iwhw(z̄) = (w − 1)h1 + hw(z̄). (4.15)

At this point we see the great resemblance, almost equality, of equations
(4.12), (4.14), (4.15), with the corresponding ones for the harmonic oscillator case. The
difference rests on the dependence onw > 0. When w = 1, however, equations
(4.12), (4.14), (4.15) are the same as those for the usual harmonic oscillator in the Segal–
Bargmann space. There is then an isomorphism betweenFw andHr for all w > 0. Note
that it is also possible to find an isomorphism betweenFw and a subspace ofH for w = 0,
but in this case it will beHs .

We would finally like to show that the coherent statesαw(z) ∈ Fw, expressed in (4.8) in
terms of|z,w〉 ∈ Hr , can be obtained through a standard procedure [6, 7] as eigenfunctions
of Cw in Fw:

Cwαw(z̄) = α αw(z̄) α ∈ C. (4.16)

Let us take

αw(z̄) =
∞∑
n=1

anθn(z̄). (4.17)

Using equation (4.14), withhw(z̄) = αw(z̄) and (4.16) one obtains the coefficientsan. In
the casew 6= 0 we get

an+1 = αn

√
0(w)

0(w + n)
a1 n = 1, 2, . . . . (4.18)

Then, by imposing the normalization, witha1 > 0, we obtain

αw(z̄) = 1F1(1, w, αz̄)√
1F1(1, w, |α|2)

which, obviously coincides with (4.8). Note that the casew = 1 is straightforwardly
obtained from the previous formula:

α1(z̄) = e(−
1
2 |α|2+αz̄).
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This is the usual representation for the harmonic oscillator coherent state in the Segal–
Bargmann space.

All these facts show thatCw andC†
w, adjoint to each other inHr , possess the same

properties onFw. Hence, the eigenstates ofCw in Hr correspond to eigenfunctions ofCw
in Fw and vice versa.

5. Concluding remarks

The w coherent states|z,w〉 and the operatorsCw, C†
w and Iw, admit a simplest

representation in the space of analytic functionsFw compared with the representation in
Hr . The usual harmonic oscillator representation is achieved whenw = 0 or w = 1.
The fact thatCw andC†

w are adjoint to each other onHr is preserved onFw because the
isomorphism betweenFw andHr . This representation of the distorted Heisenberg algebra
on Fw as far as we know, has not been explored previously. It could be important in the
analysis of the appropriate displacement operatorDw to perform the Perelomov construction
of the coherent states for the isospectral oscillator HamiltoniansHλ.
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